Product overview

<table>
<thead>
<tr>
<th>Name</th>
<th>Picrotoxin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat No</td>
<td>HB0506</td>
</tr>
<tr>
<td>Short description</td>
<td>Non-competitive GABA<sub>A</sub> receptor antagonist</td>
</tr>
<tr>
<td>Biological description</td>
<td>Non-competitive GABA<sub>A</sub> receptor antagonist. Also a glycine receptor inhibitor (IC<sub>50</sub> = 2.7 µM). Acts as a convulsant and CNS stimulant. Active <i>in vivo</i>.</td>
</tr>
<tr>
<td>Alternative names</td>
<td>PTX</td>
</tr>
<tr>
<td>Biological action</td>
<td>Antagonist</td>
</tr>
<tr>
<td>Purity</td>
<td>>98%</td>
</tr>
<tr>
<td>Customer comments</td>
<td>Getting on well with DHPG & picrotoxin – they do what they’re supposed to! Professor Bruno Frenguelli, University of Warwick, UK</td>
</tr>
</tbody>
</table>

Images

Fig 1: Picrotoxin inhibition of evoked and spontaneous GABA_A-R mediated IPSCs in mouse cortical neurons.

The GABA_A receptor antagonist Picrotoxin is commonly used to reduce the levels of inhibition by blocking the actions of the neurotransmitter GABA. Picrotoxin from Hello Bio reduces both spontaneous inhibitory post synaptic currents (IPSC) and evoked IPSCs. It was effective at concentrations of 10 µM with complete receptor blockade at 100 µM. For assay protocol, see Protocol 1 in Application Notes below.
Properties

Molecular Weight 602.59

Chemical structure

Molecular Formula C₃₀H₃₄O₁₃
CAS Number 124-87-8
PubChem identifier 518601
SMILES CC(=C)C1C2C3C4(C(C1C(=O)O2)(CC5C4(O5)O(C(=O)O3)O)C.CC12C3C4C(C(C1(CC5C2(O5)C(=O)O3)O(C(=O)O4)C(C)(C)O
InChi InChI=1S/C15H18O7.C15H16O6/c1-12(2,18)6-7-10(16)20-8(6)9-13(3)14(7,19)4-5-15(13,22-5)11(17)21-9;1-5(2)7-8-11(16)
InChiKey VJKUPQSHOVKBCO-UHFFFAOYSA-N
MDL number MFCD00074824

Applications

Application notes

The GABA$_A$ receptor antagonist Picrotoxin is commonly used to reduce the levels of inhibition by blocking the actions of the neurotransmitter GABA. Picrotoxin from Hello Bio reduces both spontaneous inhibitory post synaptic currents (IPSC) and evoked IPSCs. It was effective at concentrations of 10μM, with complete receptor blockade at 100μM. For assay protocol, see #Protocol 1 in Application Notes below

#Protocol 1: Evoked and spontaneous inhibitory post synaptic currents (IPSCs)

● Whole cell voltage clamp recordings were obtained from layer V neurons of the mouse prelimbic cortex brain slice.
● A stimulating electrode was placed in layers II/III and IPSCs were evoked by a single square (150 μs) pulse every 10 sec at a stimulus intensity that gave a reliable IPSC.
● IPSCs were evoked at a range of neuron holding voltages to measure the reversal potential of the current to ensure it was GABAergic.
● Neurons were held at 0mV and IPSCs continuously stimulated and recorded in response to 5 min applications of varying concentrations of Gabazine until complete receptor inhibition.
● Spontaneous IPSCs were recorded before and after addition of Gabazine by holding the neuron at 0mV and recording for 10 sec.
● All recordings for IPSCs were made in the presence of AMPAR antagonists.

Storing and Using Your Product

Storage instructions Room temperature
Solubility overview Soluble in DMSO (100mM) and in ethanol (50mM, gentle warming)
Important This product is for RESEARCH USE ONLY and is not intended for therapeutic or diagnostic use. Not for human or veterinary use.

References for Picrotoxin
Picrotoxin-like channel blockers of GABAA receptors.
PubMedID: 16606858

Mechanisms for picrotoxin block of alpha2 homomeric glycine receptors.
PubMedID: 16344549

Picrotoxin blockade of invertebrate glutamate-gated chloride channels: subunit dependence and evidence for binding within the pore.
PubMedID: 9886084