In my cart

You have no items in your shopping cart.

(R,S)-CHPG sodium salt


Product overview

  • Name
    (R,S)-CHPG sodium salt
  • Short description
    Selective mGluR5 agonist. Water soluble sodium salt.
  • Biological description

    Selective mGlu5 receptor agonist which shows no activity at mGlu1. Potentiates NMDA-induced depolarizations in rat hippocampal slices. Active in vivo. Water soluble sodium salt.

    CHPG also available.

  • Biological action
  • Purity
  • Citations


  • Chemical name
    (R,S)-2-Amino-2-(2-chloro-5-hydroxyphenyl)acetic acid sodium salt
  • Molecular Weight
  • Chemical structure
    (R,S)-CHPG sodium salt [1303993-73-8]
  • Molecular Formula
  • CAS Number
  • PubChem identifier
  • Source
  • InChi
  • InChiKey
  • Appearance
    Brown solid

Storing and Using Your Product

  • Storage instructions
    +4°C (desiccate)
  • Solubility overview
    Soluble in water (75 mM) and in DMSO (50 mM)
  • Important
    This product is for RESEARCH USE ONLY and is not intended for therapeutic or diagnostic use. Not for human or veterinary use.

References for (R,S)-CHPG sodium salt

  • (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) activates mGlu5, but no mGlu1, receptors expressed in CHO cells and potentiates NMDA responses in the hippocampus.

    Doherty AJ et al (1997) Neuropharmacology 36(2) : 265-7.
    PubMedID: 9144665
  • Activation of mGluR5 attenuates NMDA-induced neurotoxicity through disruption of the NMDAR-PSD-95 complex and preservation of mitochondrial function in differentiated PC12 cells.

    Dai SH et al (2014) Int J Mol Sci 15(6) : 10892-907.
    PubMedID: 24941251
  • The selective mGluR5 agonist CHPG protects against traumatic brain injury in vitro and in vivo via ERK and Akt pathway.

    Chen T et al (2012) Int J Mol Med 29(4) : 630-6.
    PubMedID: 22211238
  • Characterisation of the actions of group I metabotropic glutamate receptor subtype selective ligands on excitatory amino acid release and sodium-dependent re-uptake in rat cerebrocortical minislices.

    Fazal A et al (2003) J Neurochem 86(6) : 1346-58.
    PubMedID: 12950444
Support & Resources